
Page 1 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

Final Project Report
Course Name: Databases: Concepts and Usage

Course Code: COMP 3380

Submitted by:

Team 09

Team Members:

Sudipta Dip (dips/7900493)

Sukhmeet Singh Hora (horass/7884859)

Rishamdeep Singh (singhr50/7900942)

Submission Date: April 10th, 2024

Page 2 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

Table of Contents

1. Project Introduction .. 1

2. Data Summary ... 1

2.1. Reason of Choosing or Selection ... 1

2.2. Attributes ... 1

2.3. Cleaning, Normalization and Pre-Processing ... 3

2.4. ER Diagram .. 5

2.5. Normalized Relational Model .. 5

2.6. Data Entity Model .. 6

3. Discussion of the Data Model ... 6

3.1. Table Breakdown Reasons ... 6

3.2. Difficult Choices ... 7

3.3. Relational Database Fit .. 7

3.4. Regrets and Changes ... 7

3.5. Alternative Modelling .. 8

4. Discussion of the Database ... 8

5. Description of Interface .. 9

5.1. Command Line UI .. 9

5.2. Help Menu ... 9

5.3. Handling Invalid User Input and Preventing SQL Injection.. 10

5.4. Data Repopulation ... 11

6. List of Interesting Queries ... 11

6.1. artistallgenres .. 11

6.2. partysongs ... 12

6.3. soothingsongs .. 12

6.4. artistdistype ... 13

6.5. artistspop ... 13

6.6. popyearartists .. 14

6.7. albumsweek ... 14

7. Concluding Remarks .. 15

7.1. Relational Database System for the Dataset and Exploring Alternate Systems 15

7.2. Feasibility of Queries in Alternate Database System and Potential on Different or More

Queries ……….15

7.3. Potentials as a Teaching Tool for COMP 3380 Course and its Future Students 15

7.4. Conclusion ... 16

Appendix ... 17

Sukhmeet's Contribution .. 17

Sudipta's Contribution .. 17

Rishamdeep's Contribution... 17

References .. 18

Page 1 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

1. Project Introduction

In the ever-evolving landscape of the music industry, the power of data cannot be overstated. Our

database project is a testament to this, offering a meticulously structured relational database model that

captures the multifaceted aspects of albums, artists, and songs. With a rich array of queries at their

disposal, analysts can delve deep into the data to extract meaningful insights. From identifying top artists

by popularity and genre to analysing the evolution of an artist's popularity over time, our queries provide a

multifaceted view of the music industry. Analysts can explore trends in album releases, track popularity

which can help them to pinpoint the most influential artists or albums within a specific genre or time

frame. Moreover, our database allows analysts to scrutinize individual songs and albums which enables

them to gauge the acoustic attributes and duration patterns of albums, providing valuable insights into

artistic styles and audience preferences. With all these essential queries, our database can help an analyst

to also forecast future industry shifts. By harnessing the potential of our database, analysts can become

pivotal players in steering the music industry towards success.

2. Data Summary

Our music-related database encompasses 9 primary files, including information on albums, artists,

releases, songs, tracks, charts, popularity scores, lyrics, and acoustic features which was selected from the

source [1]. Through rigorous cleaning and normalization processes, these initial files have been

transformed into a total of 12 tables, each representing specific aspects of the music industry landscape.

These tables are interconnected through unique identifiers, facilitating comprehensive analysis and

exploration of relationships across the given participating factors.

2.1. Reason of Choosing or Selection

a. Comprehensive Coverage: The dataset includes albums, artists, and songs, offering a holistic view
of the music industry.

b. Complexity and Connectivity: With over 10 tables and 1000 rows, the dataset provides intricate
interconnections for thorough analysis.

c. Data Quality: Emphasis was placed on high data quality, minimizing blank entries and ensuring
completeness for reliable analysis.

d. Relevance and Interest: The dataset was chosen to align with users' interests, ensuring
engagement and enthusiasm for the project [2].

e. Availability and Accessibility: Sourced from public sources, the dataset ensures accessibility while
adhering to copyright and licensing requirements [2].

2.2. Attributes

i. Albums

▪ album_id (Primary Key): Unique identifier for each album.

▪ name: Name of the album.

▪ popularity: Popularity score of the album.

▪ total_tracks: Total number of tracks in the album.

▪ album_type: Type of the album (e.g., album, single, compilation).

Page 2 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

ii. Artists

▪ artist_id (Primary Key): Unique identifier for each artist.

▪ name: Name of the artist.

▪ followers: Number of followers of the artist.

▪ popularity: Popularity score of the artist.

▪ artist_type: Type of the artist (e.g., solo, band).

▪ main_genre: Main genre of the artist.

iii. Songs

▪ song_id (Primary Key): Unique identifier for each song.

▪ name: Name of the song.

▪ popularity: Popularity score of the song.

▪ type: Type of the song (e.g., solo, collaboration).

▪ album_id (Foreign Key): Identifier of the album the song belongs to.

▪ track_no: Track number of the song in the album.

▪ release_year: Year of song release.

▪ release_month: Month of song release.

▪ release_date: Exact date of song release.

▪ duration_ms: Duration of the song in milliseconds.

▪ key: Key of the song.

▪ time_signature: Time signature of the song.

▪ acousticness: Acousticness score of the song.

▪ danceability: Danceability score of the song.

▪ energy: Energy score of the song.

▪ instrumentalness: Instrumentalness score of the song.

▪ liveness: Liveness score of the song.

▪ loudness: Loudness of the song.

▪ speechiness: Speechiness score of the song.

▪ valence: Valence score of the song.

▪ tempo: Tempo of the song.

▪ lyrics: Lyrics of the song.

iv. Releases

▪ artist_id (Foreign Key): Identifier of the artist.

▪ album_id (Foreign Key): Identifier of the album.

▪ release_year: Year of release.

▪ release_month: Month of release.

▪ release_date: Exact date of release.

v. Writes

▪ song_id (Foreign Key): Identifier of the song.

▪ artist_id (Foreign Key): Identifier of the artist.

vi. ArtistGenre

▪ artist_id (Foreign Key): Identifier of the artist.

▪ genre: Genre associated with the artist.

vii. AlbumChart

▪ sl_no_album_chart (Primary Key): Sequential number for each record.

▪ album_id (Foreign Key): Identifier of the album.

▪ rank_score: Rank score of the album.

▪ peak_position: Peak position of the album on the chart.

Page 3 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

▪ week_year: Year of the chart week.

▪ week_month: Month of the chart week.

▪ week_date: Date of the chart week.

▪ weeks_on_chart_count: Number of weeks the album stayed on the chart.

viii. ArtistChart

▪ sl_no_artist_chart (Primary Key): Sequential number for each record.

▪ artist_id (Foreign Key): Identifier of the artist.

▪ rank_score: Rank score of the artist.

▪ peak_position: Peak position of the artist on the chart.

▪ week_year: Year of the chart week.

▪ week_month: Month of the chart week.

▪ week_date: Date of the chart week.

▪ weeks_on_chart_count: Number of weeks the artist stayed on the chart.

ix. SongChart

▪ sl_no_song_chart (Primary Key): Sequential number for each record.

▪ song_id (Foreign Key): Identifier of the song.

▪ rank_score: Rank score of the song.

▪ peak_position: Peak position of the song on the chart.

▪ week_year: Year of the chart week.

▪ week_month: Month of the chart week.

▪ week_date: Date of the chart week.

▪ weeks_on_chart_count: Number of weeks the song stayed on the chart.

x. AlbumPop

▪ sl_no_album_pop (Primary Key): Sequential number for each record.

▪ album_id (Foreign Key): Identifier of the album.

▪ year: Year of the popularity score.

▪ year_end_score: Year-end popularity score of the album.

xi. ArtistPop

▪ sl_no_artist_pop (Primary Key): Sequential number for each record.

▪ artist_id (Foreign Key): Identifier of the artist.

▪ year: Year of the popularity score.

▪ year_end_score: Year-end popularity score of the artist.

xii. SongPop

▪ sl_no_song_pop (Primary Key): Sequential number for each record.

▪ song_id (Foreign Key): Identifier of the song.

▪ year: Year of the popularity score.

▪ year_end_score: Year-end popularity score of the song.

2.3. Cleaning, Normalization and Pre-Processing

The following steps had been taken to clean, normalize and pre-process the database to have a processed

and optimal dataset.

1. Remove Blank Rows: Blank rows were identified and removed from each file to eliminate any

unnecessary or incomplete data entries.

Page 4 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

2. Handle Null Values in Primary Key Columns: Null values in primary key columns were addressed

by either removing the affected rows or imputing appropriate values where applicable. This

ensures the integrity of unique identifiers within the dataset.

3. Handle Duplicates: Duplicate entries were identified and removed to avoid redundancy and

maintain data accuracy.

4. Standardize Data Formats: Data formats were standardized across the dataset to ensure

consistency and facilitate analysis. This includes standardizing date formats, text capitalization, and

numerical representations.

5. Normalize Data: Data normalization

techniques were applied to minimize

redundancy and improve database

efficiency. This involves organizing data

into separate tables to reduce data

duplication and improve data integrity.

6. Resolve Data Integrity Issues: Any

inconsistencies or discrepancies in the

dataset were addressed to ensure data

integrity. This includes resolving

inconsistencies in naming conventions,

genre classifications, and other

categorical data.

7. Validate Referential Integrity:

Referential integrity constraints were

enforced to ensure that relationships

between tables are maintained and

that foreign key references are valid. In this

case, we performed inner joins to merge and

process the tables where we had total participation from both sides of a relation (fig -01).

Note that, for the cleaning and pre-processing operations, we mostly used DAX formula, Power Query and

Power BI transformations.

Original Source
Files [1]

Total
Columns

Total
Entries

↓

C
le

an
in

g,
 N

o
rm

al
iz

at
io

n
 a

n
d

 P
re

-p
ro

ce
ss

in
g

↓

Database
Tables

Total
Attributes

Total
Entries

Albums 8 26519 Albums 5 26518

Artists 8 11518 Artists 6 5825

Releases 4 26522 ArtistGenre 2 26990

Songs 7 20405 Releases 5 19100

Lyrics 2 20404 Songs 22 20405

Tracks 5 20405 Writes 2 16436

AlbumChart 5 471706 AlbumChart 8 469349

ArtistChart 5 530379 ArtistChart 8 402067

SongChart 5 250392 SongChart 8 250379

AlbumPop 4 39469 AlbumPop 4 39464

ArtistPop 4 36997 ArtistPop 4 26064

SongPop 4 25194 SongPop 4 25193

AcousticFeatures 14 20405

Fig-01: Ensuring Referential Integrity through

Power Query‘s Merge (Join)

Page 5 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

2.4. ER Diagram

2.5. Normalized Relational Model

1. Albums(album_id, name, popularity, total_tracks, album_type)

2. Artists(artist_id, name, followers, popularity, artist_type, main_genre)

3. Songs(song_id,song_name,popularity,song_type,album_id,track_no,release_year,release_month,r

elease_date,duration_ms,key,time_signature,acousticness,danceablity,energy,instrumentalness,liv

eness,loudness,speechiness,valence,tempo,lyrics)

4. Releases(artist_id,album_id,release_year, release_month, release_date)

5. Writes(song_id,artist_id)

6. ArtistGenre(artist_id,genre)

7. AlbumChart(sl_no_album_chart,album_id,rank_score,peak_position,week_year,week_month,wee

k_date,weeks_on_chart_count)

8. ArtistChart(sl_no_artist_chart,artist_id,rank_score,peak_position,week_year,week_month,week_

date,weeks_on_chart_count)

9. SongChart(sl_no_song_chart,song_id,rank_score,peak_position,week_year,week_month,week_da

te,weeks_on_chart_count)

10. AlbumPop(sl_no_album_pop,album_id,year,year_end_score)

11. ArtistPop(sl_no_artist_pop,artist_id,year,year_end_score)

12. SongPop(sl_no_song_pop,song_id,year,year_end_score)

Fig-02: Database ER Diagram

Page 6 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

2.6. Data Entity Model

3. Discussion of the Data Model

3.1. Table Breakdown Reasons

The data model was already broken down into multiple tables to reflect the complex relationships and

attributes within the music industry. Each table represents a distinct entity (e.g., albums, artists, songs),

allowing for efficient data organization and retrieval [2]. However, we required further break-down of the

data to ensure data integrity and to reduce redundancy.

a. Remove unnecessary attributes

The attribute billboard was mostly restating the values of the name attribute in songs and albums

which was removed. Again, the artists table had image_url of their images; many of the artists had

null values for this attribute and the available images also do not serve any analytical purpose,

hence, we removed it. There were some boolean attributes like explicit, is_pop etc. which were

also eliminated as they can also be determined by some corresponding scoring attributes.

b. Handle multi-value attribute

Artists table had a multi-value attribute named genres which stored all the related genres for an

artist. For handling this concern, we made a separate table named ArtistGenre and used Power

Query delimiter and unpivot operation to assign multiple genres to the same artist at different

table entries. We also had to breakdown all the release_date attributes into date, month and year

for ensuring proper and convenient comparison from a query.

c. Reference Table in a many-to-many relationship

We had to add a table named Writes which only stores the foreign keys from Songs and Artists to

ensure no data duplication in this many-to-many relationship.

Fig-03: Data Entity Model by Power Query Connection

Page 7 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

3.2. Difficult Choices

During the design process, some challenging decisions were faced regarding some tricky participation and

cardinality ratios.

a. Cardinality of Songs, Albums, Artists with their corresponding Chart and Pop tables

In the AlbumChart and AlbumPop table, there are many entries for a single Album. However, in the

beginning, we did not have any auto-generated keys and so ended up with a many-to-many

relationship. However, while reflecting on feedback later, we realized the significance of a serial

keys as the primary key of these tables and landed into an appropriate one-to-many relationship.

The same situation happened with ArtistChart, ArtistPop, SongChart and SongPop tables.

b. Participation ratio between Songs and Albums

We processed our database in a way such that an Artist cannot exist in the database without

releasing an album or writing a song. Hence, we had a total participation between ‘Albums and

Artists’, and ‘Songs and Artists’. We also assumed to have a total participation between Albums

and Songs considering the fact that a song is always a part of an album. However, as we progressed

through our project, we realized that there can be songs without an album and a total participation

eliminates a good number of records from our database. Therefore, we made the relationship as a

partial participation with consideration that an album can still be in the database with missing its

songs and a song can be written without assigning it to an album or with a missing album entry.

This change made our database more consistent and prevented losing most of its data.

3.3. Relational Database Fit

The data model cleanly fit into the relational database paradigm, as it effectively captures the relationships

between entities through primary and foreign key constraints. This relational structure enables efficient

querying and manipulation of the data. This was possible due to the actions mentioned in section 3.1-2.

3.4. Regrets and Changes

While the initial model was carefully designed, there may be some aspects that could have been improved

upon in hindsight. For instance,

a. Albums with missing Songs

All the songs of an existing album should have also existed in the database; due to not having this

privilege, we could not make the total_track attribute derived.

b. Two types of Release Day

No song should have been in the database without its corresponding Album; due to not having this

privilege, we ended up having two types of release day one for when an artist releases an album

and another for when an artist writes a song. We did not forcefully make a total participation in

this regard to ensure more consistency and data availability as mentioned in section 3.2(b).

However, our model needed to be changed from our initial version as we shifted from a total

participation to a partial participation between Songs and Album.

We also designed the model to have all many-to-many relationship of Songs, Albums, Artists with their

corresponding Chart and Pop tables. We had to change these one-to-many relationships as per the reasons

mentioned in section 3.2(a). Apart from these, we did not have major changes to our initial database

design.

Page 8 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

3.5. Alternative Modelling

a. Primary Key Choice

Using "id" and "week" together as the primary key in Chart tables is a viable alternative. This

approach ensures uniqueness within each week. Also, employing "id" and "year" together as the

primary key in Pop tables could be another option. This ensures uniqueness within each year and

simplifies querying, especially for yearly trends and analysis. However, these approaches may

increase complexity in querying and indexing due to composite keys.

b. Storing Images

Storing images associated with albums or artists could enhance the user experience as we had

some image URLs provided in the original database [1]. However, it may require additional storage

space and considerations for image file formats and retrieval methods.

c. Lyrics Storage

Storing lyrics in a separate table linked to songs or storing them as JSON strings could provide

flexibility for longer texts and facilitate searching and analysis based on lyrical content. However,

this approach may introduce complexities in maintaining data consistency and synchronization.

d. Handling Many Attributes in Songs

Managing many attributes in the Songs table might lead to redundancy and data integrity issues. A

possible solution could involve normalizing the data by splitting attributes into separate tables,

such as one for audio features and another for metadata. We could also transfer the release day to

the relationship table Writes.

Given the work completed and the project's objectives and based on the pros and cons of the alternative

actions mentioned above, we would still choose the current model as it effectively captures the essential

aspects of the music industry and meets the requirements for analysis and exploration. However, we could

handle the Songs table in a better way following some options mentioned in part (d) of this section 3.5.

4. Discussion of the Database

For our project, we utilized a Microsoft SQL Server database management system (DBMS) hosted on the

Uranium platform of University of Manitoba. The database is accessed through Aviary Linux system of

University of Manitoba, which serves as the development and execution environment for our queries and

scripts.

The database connectivity is established using the JDBC (Java Database Connectivity) driver provided by

Microsoft SQL Server. Specifically, we incorporated the mssql-jdbc-11.2.0.jre11.jar file, which corresponds

to the version of the JDBC driver used for connecting to the SQL Server database.

To facilitate secure authentication and connection to the database, we stored the necessary user

credentials (username and password) of one of our team members in a configuration file named auth.cfg.

This file ensures that only authorized users can access the database and execute queries unless the file has

been shared unknowingly.

The choice of Microsoft SQL Server was a project requirement for us. Additionally, the integration of Aviary

and Uranium platforms provided a seamless environment for database development, testing, and

deployment.

Page 9 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

The database population process involved reading data from .csv files and generating SQL insert

commands. This task was executed efficiently using batch processing with the addBatch() method to

accumulate SQL commands and executeBatch() method to execute them in bulk. This approach

streamlined the population process by minimizing database interactions and optimizing performance.

Additionally, the batch execution ensured consistency and reliability in data insertion, enhancing the

overall robustness of the database population procedure.

5. Description of Interface

5.1. Command Line UI

User interface of a program that operates primarily through text commands entered by the user via a

command-line interface (CLI), rather than a graphical user interface (GUI).

Interface Functionality

i. Command Line Interface made using java.

ii. The user can enter the commands to interact with the database.

iii. h command to see the menu of valid commands.

iv. The user gets the results displayed in a tabular form for a better view and progress bar only for the

repopulate command (takes time to complete execution).

v. The interface is made easy to use with allowing the user to get customized results with multiple

inputs and get a result displayed in a tabular form.

5.2. Help Menu

When the user runs the program, they can press the command h to view the help menu. This menu

provides information about the various commands available within the program, along with explanations

of their functionalities and the syntax required to use them.

The user must run the h - Get help and instructions commands menu command to display a menu of

commands with the description of commands.

Instructions to Use the Commands

i. Some commands require specific inputs like artistName/albumName/songName/genre.

ii. Use basic commands like 'artists', 'albums', or 'songs ' or 'artistcount ' 'or artistdistype' to get list of

full artists/albums/songs Names or genres or type of artists in our database.

iii. Each command in the help menu follows a specific format, typically indicating the command name

followed by required and optional input parameters enclosed in angle brackets (< >).

iv. Attributes marked with * are optional and not required for the command to function but can

specify additional criteria or filters for the command's execution.

v. Each Command has a description which explains the expected output, use of input and the

additional criteria for optional inputs.

Page 10 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

5.3. Handling Invalid User Input and Preventing SQL Injection

a) Handling invalid input

The user gets an error message Invalid Input or Invalid Command is asked to re-enter another

command when the user either enters a command that does not exist or a command with

incomplete required inputs or input is not of the valid required type.

b) Handling SQL injection

The user gets an error message and is asked to re-enter another command when the user

tries to inject SQL commands as input. This is checked by seeing if the user input contains any

of the following strings "--", ";", "' ", """, ",", ")", ">", "=", "union select", "or select", "intersect

select", "except ", "*".

Fig-04: Help Menu in Command Line UI

Page 11 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

5.4. Data Repopulation

Command to repopulate data is repopulate - Create and populate all tables in the database.

This command calls the repopulate() function in the code that first calls setup() and then calls the functions

to read the .csv file in Database Files folder, add the queries to the batch and execute the batch.

Progress bar is shown to users to visually indicate the ongoing process of refreshing data, ensuring a user-

friendly experience by providing clear feedback that the command is being executed.

6. List of Interesting Queries

The Following queries are few of the interesting queries for our project.

6.1. artistallgenres

This query list the names of all the artists

that follow all the genres which are like X

using wild-card approach for searching. The

query is interesting for user to know the

artists who follow all varieties for a certain

type of genre.

The command must be in format

artistallgenres <genre> where genre is the

user input.

X is user input here.

Fig-05: Examples of Handling Invalid User Input and

Preventing Injection in Command Line UI

Fig-06: Progression for Data Repopulation in Command Line UI

Fig-07: Executing artistallgenres command in Command Line UI

Page 12 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

6.2. partysongs

The analyst can ask to display the N number of party Songs, their writer and the album name they were

released in. Party songs usually have:

i. High danceability

ii. High energy

iii. High tempo

iv. Low acousticness

v. Positive valence

vi. Moderate to high loudness

vii. Low instrumentalness

Here we are assuming that party songs have danceability > 0.5, energy > 0.5, tempo > 100, acousticness <

0.5, valence > 0, loudness < -5 and instrumentalness < 0.01.

The user enters the number of songs to display in the list which is N.

Command Format: partysongs <N> - List N Party Songs: artist, album, and song popularity.

6.3. soothingsongs

The analyst can ask to display the N number of soothing Songs, their writer and the album name they were

released in. Part songs usually have:

i. Low danceability

ii. Low tempo

iii. High acousticness

iv. Low energy

v. Positive valence

vi. Low loudness

vii. Low instrumentalness

Here we are assuming that party songs have danceability < 0.5, energy < 0.5, temp < < 120, acousticness >

0.5, valence > 0, loudness > -5, instrumentalness < 0.01).

The user enters the number of songs to list. Let user has entered N.

Command Format: soothingsongs <N> - List N Soothing Songs: artist, album, and song popularity.

Fig-08: Executing partysongs command in Command Line UI

Page 13 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

6.4. artistdistype

The analyst can ask to see the

distribution of artists according to their

type, then to display the name, followers

and popularity of a specific type of artist.

The user can enter the type of artist from

the displayed distribution list. Let the

user type X on the follow-up command

entry.

Command Format: artistdistype - Get

the distribution of artists by type and

names of artists by specific type.

6.5. artistspop

The analyst can ask to list N number of artists in ascending order (i.e. top) or descending order (i.e. bottom)

of year end score in Artist Pop. If they specify a genre, the order will be made on only the artists that have

the requested genre in their genres attribute. Otherwise, the order will be made on all the artists in the

database.

Command Format: artistspop <top or bottom> <N> <start_year> <end_year> <*genre> - Get the

top/bottom N artists by popularity for a given year range (optional - genre).

We have similar command for albums (albumspop <top or bottom> <N> <start_year> <end_year> - Get the

top/bottom N albums for the year range) and songs (songspop <top or bottom> <N> <start_year>

<end_year> - Get the top/bottom N songs for the year range).

Fig-09: Executing soothingsongs command in Command Line UI

Fig-10: Executing artistdistype command in Command Line UI

Page 14 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

6.6. popyearartists

The analyst can ask how the popularity of the artists has

changed year after year. The user can enter the specific

artist’s name. Let the user typed name be X.

Command Format: popyearartists <artistname> - View how

the popularity of an artist by name has changed over time

(year to year).

6.7. albumsweek

The analyst can ask to list N number of albums in ascending

order (i.e. top) or descending order (i.e. bottom) of the average of rank score in Album Chart that qualifies

for the requested week range.

Command Format: albumsweek <top or bottom> <N> <startdate> <enddate> - Get the top/bottom N

albums for a week range (MM/DD/YYYY).

We have two similar queries for artists (artistsweek <top or bottom> <N> <startdate> <enddate> <*genre>

- Get the top/bottom N artists for a week range (MM/DD/YYYY) (optional for a specific genre)) and songs

(songsweek <top or bottom> <N> <startdate> <enddate> - Get the top/bottom N songs for a week range

(MM/DD/YYYY)).

Fig-11: Executing artistspop command in Command Line UI

Fig-12: Executing popyearartists command in

Command Line UI

Fig-13: Executing albumsweek command in Command Line UI

Page 15 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

7. Concluding Remarks

7.1. Relational Database System for the Dataset and Exploring Alternate Systems

For the organization and management of our dataset, which encompasses a variety of entities including

songs, artists, albums, and charts, we have determined that a relational database management system

(RDBMS), specifically MySQL, is most suitable. This decision is grounded in the inherently structured nature

of our data, where entities are not only distinct but also interconnected through various relationships. For

instance, songs are linked to artists and albums, while albums correlate with artists and potentially charts,

necessitating a system that can efficiently manage and query these intricate relationships.

Relational databases, such as MySQL, excel in handling structured data and supporting complex queries

that involve multiple entities and their relationships. This capability is particularly beneficial for our

dataset, enabling us to perform sophisticated data analysis. For example, we can easily query the database

to find all songs by a particular artist that appeared on specific charts within a given timeframe, or to

retrieve all albums that contain songs that have achieved a certain ranking.

While alternative database systems like NoSQL or graph databases present certain advantages, such as

scalability and flexibility for unstructured data or the efficient mapping of relationships, respectively, they

were not deemed optimal for our specific requirements. NoSQL databases lack the inherent structure and

complex querying capabilities for relational data. Similarly, while graph databases are excellent for

mapping and exploring relationships between data points is not suitable for our dataset because we

needed a database that could handle complex relational queries. Therefore, employing MySQL as our

database solution offers a balance of efficiency, structure, and the ability to handle complex queries

involving multiple relationships between entities. This approach ensures that we can maintain data

integrity, support detailed data analysis.

7.2. Feasibility of Queries in Alternate Database System and Potential on Different or

More Queries

The feasibility and ease of recreating the interesting queries mentioned, which involve complex relationships

between songs, artists, albums, and charts, would vary significantly across different database systems. Each

type of database relational, NoSQL, and graph has its own set of strengths and weaknesses that influence

how data can be structured, stored, and queried. NoSQL databases allow for more flexible data models,

which can support dynamic queries on unstructured or semi-structured data. However, recreating complex

relational queries might be less straightforward.

Graph databases enable a different set of queries, particularly those involving deep relationships, patterns,

or paths between data points. If we were to use a graph database, we could potentially make a query that

would return a recommendation of songs depending on the input set of songs but on the other hand it would

be very hard to do queries where we require the joining of large volumes of entries which is more

straightforward in a relational DBMS.

7.3. Potentials as a Teaching Tool for COMP 3380 Course and its Future Students

A database featuring songs, artists, albums, and charts would serve as an excellent teaching tool by

providing a rich context for practical exercises across various aspects of database design and management.

Students could engage in data modelling to create an efficient, normalized schema that represents

complex relationships within the music industry, honing their skills in identifying key relational database

Page 16 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

components. Writing SQL queries to analyse music trends would teach students proficiency in SQL.

Assignments could explore transaction management, simulating real-world scenarios of updating charts

and handling concurrent database accesses, thus emphasizing the importance of data integrity and

consistency. Furthermore, students could learn about performance optimization through query tuning and

index design. This multifaceted approach not only enriches students' theoretical knowledge but also equips

them with practical skills crucial for navigating the complexities of database systems.

7.4. Conclusion

For the structured and relational nature of our music-related dataset, which includes entities like songs,

artists, albums, and charts, a relational database management system, specifically MySQL, has been

identified as the most fitting solution. This choice was motivated by the need to efficiently manage and

query the complex interconnections among these entities, where MySQL's strengths in handling structured

data and supporting complex relational queries come to the forefront. Despite the potential advantages of

alternative systems like NoSQL and graph databases these were not deemed optimal due to their

limitations in handling the kind of complex relational queries our dataset requires. The detailed data

analysis and integrity maintenance facilitated by MySQL underline its suitability for our needs.

Furthermore, the dataset's structure offers a rich educational resource for database design and

management courses, providing students with hands-on experience in data modelling, SQL querying, and

understanding transaction management and performance optimization. This comprehensive approach not

only enhances theoretical knowledge but also imparts practical skills essential for navigating database

systems, making it an exemplary teaching tool for courses like COMP 3380.

Page 17 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

Appendix

Sukhmeet's Contribution

Sukhmeet played a critical role in the development and optimization of the project code to interact with the

database (interface), functionality and ease of use and querying capabilities, making the program robust

against invalid input and sql injection. He was instrumental in the normalization process, ensuring the

database structure was efficient and logically organized, which is vital for maintaining data integrity and

optimizing query performance. Additionally, Sukhmeet contributed significantly to the creation of the Entity-

Relationship (ER) diagram, a crucial step in visualizing the database schema and understanding the

relationships between the data entities, converting into a relational model and normalizing it. He wrote the

instructions on how to create and populate the database and run your program in the readme file and

prepared the final project submissions. His work on the query and interface aspects facilitated smooth

interaction with the database, allowing for efficient data retrieval and manipulation.

Sudipta's Contribution

Sudipta focused on the essential tasks of data cleaning and formulating complex queries, a foundational

work that guaranteed the data's quality and usability within the database. His efforts in data cleaning were

paramount in ensuring accuracy and consistency across the dataset, which, in turn, enhanced the reliability

of query results. Beyond this, Sudipta was involved in developing the ER diagram, providing a clear blueprint

of the database structure and relationships. His contribution to the project's documentation further enriched

the resource pool, offering detailed insights into the database schema, query examples, and guidelines for

future users, thereby ensuring the project's longevity and ease of use.

Rishamdeep's Contribution

Rishamdeep's contributions were pivotal to the foundational aspects and overall integrity of the project. He

commenced his involvement by identifying and securing the dataset, a crucial step that determined the

project's scope and potential. Following this, Rishamdeep undertook the critical task of designing the

database, a process that involved detailed planning to ensure the structure would efficiently support the

dataset's complexity and the intended queries. His role also extended to populating the database, where he

used batches to transfer data into the newly created allowing efficient data transfer to the database while

also ensuring accuracy and consistency in the dataset's representation within the database. He played a

central role in crafting the ER diagram and applied normalization principles to the database, a critical step

for reducing redundancy and enhancing the integrity and efficiency of the database operations.

Page 18 of 18

COMP 3380 – FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Department of

Computer Science

References

[1] .csv Tables: musicoset_metadata.zip (Contains textual and numeric information about songs, artists, and

albums), musicoset_popularity.zip (Contains nine tables of musical popularity information) and

musicoset_songfeatures.zip (Contains lyrics and acoustic fingerprints of the songs collected).

Available: [Online] https://marianaossilva.github.io/DSW2019/index.html#tables.

[2] MusicOSet, An Enhanced Music Dataset for Music Data Mining. Available: [Online]

https://marianaossilva.github.io/DSW2019/index.html.

https://marianaossilva.github.io/DSW2019/index.html#tables
https://marianaossilva.github.io/DSW2019/index.html

