Final Project Report

Course Name: Databases: Concepts and Usage
Course Code: COMP 3380

Submitted by:
Team 09

Team Members:
Sudipta Dip (dips/7900493)
Sukhmeet Singh Hora (horass/7884859)
Rishamdeep Singh (singhr50/7900942)

Submission Date: April 10", 2024

N

UM ‘ Department of . _
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

N

Table of Contents

O o o Y=Yt 1o} d e Yo [¥ Lot o o I RPN 1
B D=1 - BT U0 4 0 = Y28 N 1
2.1. Reason of ChooSiNg OF SEIECLIONvviiiieiiee e et rae e e 1
2.2. A o] o TU =P PSP 1
2.3. Cleaning, Normalization and Pre-ProCesSiNg.....cccucueeeiicieeeriiiieeeniieeeessneeeesveeesssnseessssvenns 3
2.4, [DI =4 =T o o IO PPNt 5
2.5. Normalized Relational MOEL.........coocuiiiiiiiiiii e e e e enee 5
2.6. Data ENtity MOEL.......eiiiiiiiiee ettt e s e e s sbe e e e s btae e s snraeeesanes 6
3. Discussion Of the Data MOcccuiiiiiiiiieiiiie ettt s see e s be e e sabeesbeesbeeesbeeenns 6
3.1. Table BreakdoWn REASONS.ciicuiiiiiiiiiie ittt ettt e sttt e e s evte e e s sbae e e e sbae e e s sbeeeessbeeeessnseeeessnnes 6
3.2 D] (ol U A1 o [0l < PPN 7
3.3. Relational Database Fit........cceiecieiiiiiiiiieeie ettt see s s e e e st e s te e esaee e sbeeesans 7
3.4. T Y E Yo Vo [Ol o - o =T PPN 7
3.5. ALErNAtivVe MOEIIING .coo e e e e e e e s be e e e s sabee e e enareeas 8
4. Discussion Of the Databasec.cccuiieciiiiiie ittt sae e st e e e e s be e ebee e sateeeaeeesaree s 8
5. DesCription Of INtEITACE c..uvviiieiiee e e s e e st e e s e ee e e esabeeas 9
5.1. COMMANG LINE Ul ittt ettt ettt e st e st e s tae e ate e esbeaessteesnteesnaeesnseeenn 9
5.2. [=TT Y 1T o 1V PPN 9
5.3. Handling Invalid User Input and Preventing SQL Injection........ccccccvveiieeeiiiieeecicieee e, 10
5.4. DY = I =T o To] o1V - | 4 o o F U 11
6. List Of INTEreStiNg QUEIIES . .cccceieee ettt eeee e et e e e et e e e e aba e e e eenbeeeeeenbeeaeeenneeas 11
6.1. LI =1 | =T o TSP 11
6.2. [0 =T Y20 Y =SS 12
6.3. 0 Yo Yt a1 Y={YoT V=L 12
6.4. L u S e [Y7 o1 RSP 13
6.5. =T] 0T o N 13
6.6. [0 XY= T =Y o] N 14
6.7. AIDUMSWEEK. ...ttt ettt st e s e e st e e s bt e e sbe e e sabeesabeesbeeesabeenn 14
N oY Vol [0 T [T = 2T 0 s F= Y 4TSRS 15
7.1. Relational Database System for the Dataset and Exploring Alternate Systemes.................. 15
7.2. Feasibility of Queries in Alternate Database System and Potential on Different or More
QUUEBTTIES et sttt sttt ettt bt a et st e e sbe et et et eebees b es et e st see sheeateat et eae e esbessen et et sheeheeaeeue et eseenrenn 15
7.3. Potentials as a Teaching Tool for COMP 3380 Course and its Future Students.................. 15
7.4. CONCIUSION 1.ttt ettt e st e e sabe e e sabe e sabeesbbeesabeesbteessbeesabeeenaseens 16
Yo 01T o [SRR 17
SUKNMEEL'S CONEIDULION c...iiiiiieeie ettt e e e e e st e e s nteesnseeerneeesnnneenns 17
SUdiPta's CONEIIBULION c....eiiiicee et e e e e e e e sara e e e esatbeeeeanareeeean 17
Rishamdeep's CONTIIDULION.ccuuiiiiiee ettt e e et e e e eabe e e e e beee e e e ataeaeeeaseeas 17
RETEIEINCES .ottt ettt ettt et st et e sabe e sabe e s bte e s baesaabeesabaessbeesabaeenabeensteesabaeesabaeenn 18
Department of
UM ‘ Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 1 of 18

1. Project Introduction

In the ever-evolving landscape of the music industry, the power of data cannot be overstated. Our
database project is a testament to this, offering a meticulously structured relational database model that
captures the multifaceted aspects of albums, artists, and songs. With a rich array of queries at their
disposal, analysts can delve deep into the data to extract meaningful insights. From identifying top artists
by popularity and genre to analysing the evolution of an artist's popularity over time, our queries provide a
multifaceted view of the music industry. Analysts can explore trends in album releases, track popularity
which can help them to pinpoint the most influential artists or albums within a specific genre or time
frame. Moreover, our database allows analysts to scrutinize individual songs and albums which enables
them to gauge the acoustic attributes and duration patterns of albums, providing valuable insights into
artistic styles and audience preferences. With all these essential queries, our database can help an analyst
to also forecast future industry shifts. By harnessing the potential of our database, analysts can become
pivotal players in steering the music industry towards success.

2. Data Summary

Our music-related database encompasses 9 primary files, including information on albums, artists,
releases, songs, tracks, charts, popularity scores, lyrics, and acoustic features which was selected from the
source [1]. Through rigorous cleaning and normalization processes, these initial files have been
transformed into a total of 12 tables, each representing specific aspects of the music industry landscape.
These tables are interconnected through unique identifiers, facilitating comprehensive analysis and
exploration of relationships across the given participating factors.

2.1.Reason of Choosing or Selection

a. Comprehensive Coverage: The dataset includes albums, artists, and songs, offering a holistic view
of the music industry.

b. Complexity and Connectivity: With over 10 tables and 1000 rows, the dataset provides intricate
interconnections for thorough analysis.

c. Data Quality: Emphasis was placed on high data quality, minimizing blank entries and ensuring
completeness for reliable analysis.

d. Relevance and Interest: The dataset was chosen to align with users' interests, ensuring
engagement and enthusiasm for the project [2].

e. Availability and Accessibility: Sourced from public sources, the dataset ensures accessibility while
adhering to copyright and licensing requirements [2].

2.2. Attributes

i Albums
= album_id (Primary Key): Unique identifier for each aloum.
= name: Name of the album.
= popularity: Popularity score of the album.
= total tracks: Total number of tracks in the album.
= album_type: Type of the album (e.g., album, single, compilation).

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

N

Vi.

Vii.

2 UM |

Artists
artist_id (Primary Key): Unique identifier for each artist.
name: Name of the artist.
followers: Number of followers of the artist.
popularity: Popularity score of the artist.
artist_type: Type of the artist (e.g., solo, band).
main_genre: Main genre of the artist.

Songs
song_id (Primary Key): Unique identifier for each song.
name: Name of the song.
popularity: Popularity score of the song.
type: Type of the song (e.g., solo, collaboration).
album_id (Foreign Key): Identifier of the album the song belongs to.
track_no: Track number of the song in the album.
release_year: Year of song release.
release_month: Month of song release.
release_date: Exact date of song release.
duration_ms: Duration of the song in milliseconds.
key: Key of the song.
time_signature: Time signature of the song.
acousticness: Acousticness score of the song.
danceability: Danceability score of the song.
energy: Energy score of the song.
instrumentalness: Instrumentalness score of the song.
liveness: Liveness score of the song.
loudness: Loudness of the song.
speechiness: Speechiness score of the song.
valence: Valence score of the song.
tempo: Tempo of the song.
lyrics: Lyrics of the song.

Releases
artist_id (Foreign Key): Identifier of the artist.
album_id (Foreign Key): Identifier of the album.
release_year: Year of release.
release_month: Month of release.
release_date: Exact date of release.

Writes
song_id (Foreign Key): Identifier of the song.
artist_id (Foreign Key): Identifier of the artist.

ArtistGenre
artist_id (Foreign Key): Identifier of the artist.
genre: Genre associated with the artist.

AlbumChart

sl_no_album_chart (Primary Key): Sequential number for each record.

album_id (Foreign Key): Identifier of the album.
rank_score: Rank score of the album.

Page 2 of 18

= peak_position: Peak position of the album on the chart.

Department of
Computer Science

COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 3 of 18

= week_year: Year of the chart week.

= week _month: Month of the chart week.

= week date: Date of the chart week.

= weeks_on_chart_count: Number of weeks the album stayed on the chart.

viii. ArtistChart
= s/ _no_artist_chart (Primary Key): Sequential number for each record.
= artist_id (Foreign Key): Identifier of the artist.
= rank_score: Rank score of the artist.
= peak position: Peak position of the artist on the chart.
= week_year: Year of the chart week.
= week_month: Month of the chart week.
= week date: Date of the chart week.
= weeks_on_chart_count: Number of weeks the artist stayed on the chart.

iX. SongChart
= sl no_song_chart (Primary Key): Sequential number for each record.
= song_id (Foreign Key): Identifier of the song.
= rank_score: Rank score of the song.
= peak_position: Peak position of the song on the chart.
= week year: Year of the chart week.
= week month: Month of the chart week.
= week date: Date of the chart week.
= weeks _on_chart _count: Number of weeks the song stayed on the chart.

X. AlbumPop
= sl no_album_pop (Primary Key): Sequential number for each record.
= album_id (Foreign Key): Identifier of the album.
= year: Year of the popularity score.
= year_end_score: Year-end popularity score of the album.

Xi. ArtistPop
= sl_no_artist_pop (Primary Key): Sequential number for each record.
= artist_id (Foreign Key): Identifier of the artist.
= year: Year of the popularity score.
= year_end_score: Year-end popularity score of the artist.

Xii. SongPop
= sl_no_song_pop (Primary Key): Sequential number for each record.
= song_id (Foreign Key): Identifier of the song.
= year: Year of the popularity score.
= year_end_score: Year-end popularity score of the song.

2.3. Cleaning, Normalization and Pre-Processing

The following steps had been taken to clean, normalize and pre-process the database to have a processed
and optimal dataset.

1. Remove Blank Rows: Blank rows were identified and removed from each file to eliminate any
unnecessary or incomplete data entries.

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 4 of 18

2. Handle Null Values in Primary Key Columns: Null values in primary key columns were addressed
by either removing the affected rows or imputing appropriate values where applicable. This
ensures the integrity of unique identifiers within the dataset.

3. Handle Duplicates: Duplicate entries were identified and removed to avoid redundancy and
maintain data accuracy.

4. Standardize Data Formats: Data formats were standardized across the dataset to ensure
consistency and facilitate analysis. This includes standardizing date formats, text capitalization, and
numerical representations.

5. Normalize Data: Data normalization
techniques were applied to minimize
redundancy and improve database B —
efficiency. This involves organizing data Songs
into separate tables to reduce data
duplication and improve data integrity.

popularity

2xLMifQCDGFmkHkpNLDOh

3KKXRKHDMCARZOaVIEI68P S

6. Resolve Data Integrity Issues: Any < >
inconsistencies or discrepancies in the Song Chart
dataset were addressed to ensure data sl_no_song_chart - ‘n’ur:f_ldp}] rank_score _ polk_pollnun“) waek_month a1 waek_date ‘ wec
integrity. This includes resolving B
. 3 2xLMifQCjDGFmkHkpNLDSh 98 100 12 29
inconsistencies in naming conventions, ¢ IomMCATDAVEISSH 2

genre classifications, and other
categorical data.

7. Validate Referential Integrity:
Referential integrity constraints were

enforced to ensure that relationships ‘ HakwgOFAADR5HIO 7 st

. . 530a5Bu0UTU808qCTaHKoz 17 rUTOT
between tables are maintained and Fig-01: Ensuring Referential Integrity through
that foreign key references are valid. In this Power Query‘s Merge (Join)

case, we performed inner joins to merge and
process the tables where we had total participation from both sides of a relation (fig -01).

Note that, for the cleaning and pre-processing operations, we mostly used DAX formula, Power Query and
Power Bl transformations.

Original Source | Total Total 00 Database Total Total
Files [1] Columns | Entries § Tables Attributes | Entries
Albums 8 26519 § Albums 5 26518
Artists 8 11518 = Artists 6 5825
Releases 4 26522 :_;’ ArtistGenre 2 26990
Songs 7 20405 o Releases 5 19100
Lyrics 2 20404 2 Songs 22 20405
Tracks 5 20405 - 2 - | Writes 2 16436
AlbumChart 5 471706 I AlbumChart 8 469349
ArtistChart 5 530379 TEU ArtistChart 8 402067
SongChart 5 250392 <) SongChart 8 250379
AlbumPop 4 39469 = | AlbumPop 4 39464
ArtistPop 4 36997 £ ArtistPop 4 26064
SongPop 4 25194 3 SongPop 4 25193
AcousticFeatures | 14 20405 ©

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 5 of 18

2.4.ER Diagram

D & z
Album o~ Artist Z /N Artist year Song
Chart chatcount) | Chart Pop [\ seoe Chart

MSong
Pop

year end ity) | et mesa d
score ! year en
« available)/ score

Album
Pop

Tracks

Fig-02: Database ER Diagram

2.5. Normalized Relational Model

1. Albums(album_id, name, popularity, total_tracks, aloum_type)
2. Artists(artist_id, name, followers, popularity, artist_type, main_genre)

3. Songs(song_id,song_name,popularity,song_type,album_id,track_no,release_year,release_month,r
elease_date,duration_ms,key,time_signature,acousticness,danceablity,energy,instrumentalness,liv
eness,loudness,speechiness,valence,tempo,lyrics)

4. Releases(artist_id,album_id,release_year, release_month, release_date)

5. Writes(song_id,artist_id)

6. ArtistGenre(artist_id,genre)

7. AlbumChart(sl_no_album_chart,aloum_id,rank_score,peak_position,week_year,week_month,wee

k_date,weeks_on_chart_count)

8. ArtistChart(sl_no_artist_chart,artist_id,rank_score,peak_position,week_year,week_month,week_
date,weeks_on_chart_count)

9. SongChart(sl_no_song_chart,song_id,rank_score,peak_position,week_year,week_month,week_da
te,weeks_on_chart_count)

10. AlbumPop(sl_no_album_pop,album_id,year,year_end_score)

11. ArtistPop(sl_no_artist_pop,artist_id,year,year_end_score)

12. SongPop(sl_no_song_pop,song_id,year,year_end_score)

SN
p UM ‘ Department of
@ Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - . Dip, S. S. Hora, R. Singh

2.6. Data Entity Model

A Album_Pop
& sl_no_album_pop [ArtistGenre 0 Song Pop
£ album id m antist id [sl no_song pop
F year_end_score = genre M song_id
M year [year_end_score
- E year
e L‘W
1 1
£ Albums) £ Releases 3 Artists
M album_id £ artist_id [artist id -
g name 1= | mabumid [name & Writes
popularity 1 "| @ release year 81 & followers 1——a £ song_id
&D total_tracks E7 release month Hom popularity £ artist_id
0 album type [release_date [artist_type
; [main_genre
LEW 1
T _uj :
H T S
£ Album_Chart 9 Artist Chart :
— [Song_Chart
£l sl no album chart £ sl_no_artist_chart
£ album_id 7 artist id * M sl_no_song_chart
1 rank_score M rank score E=1 Artist_Pop [song id
(E peak_position £ peak_position £ sl_no_artist_pop & rank_score
Fl week_month & week_month 1 artist_id ED peak_position
@ week_date I week date [year end_score £ week_month
1 week_year) week_year = year [week_date

I weeks on chart count

M weeks_on_chart_count

[week_year

Fl weeks_on_chart_count

Fig-03: Data Entity Model by Power Query Connection

3. Discussion of the Data Model

3.1. Table Breakdown Reasons

Page 6 of 18

. .

1
3 Songs

M song id
i song_name
i popularity
fl song_lype
M album_id
M track_no
[release year
1 release_month
M release_date
[duration ms
£ key
[time_signature
M acousticness
[danceability
1 energy
M instrumentalness
M liveness
I loudness
[speechiness
1 valence
1 tempo
£ lyrics

The data model was already broken down into multiple tables to reflect the complex relationships and
attributes within the music industry. Each table represents a distinct entity (e.g., albums, artists, songs),
allowing for efficient data organization and retrieval [2]. However, we required further break-down of the
data to ensure data integrity and to reduce redundancy.

a. Remove unnecessary attributes
The attribute billboard was mostly restating the values of the name attribute in songs and albums
which was removed. Again, the artists table had image_url of their images; many of the artists had
null values for this attribute and the available images also do not serve any analytical purpose,
hence, we removed it. There were some boolean attributes like explicit, is_pop etc. which were
also eliminated as they can also be determined by some corresponding scoring attributes.

b. Handle multi-value attribute
Artists table had a multi-value attribute named genres which stored all the related genres for an
artist. For handling this concern, we made a separate table named ArtistGenre and used Power
Query delimiter and unpivot operation to assign multiple genres to the same artist at different
table entries. We also had to breakdown all the release_date attributes into date, month and year
for ensuring proper and convenient comparison from a query.

c. Reference Table in a many-to-many relationship
We had to add a table named Writes which only stores the foreign keys from Songs and Artists to
ensure no data duplication in this many-to-many relationship.

= UM

Department of
Computer Science

COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

N

Page 7 of 18

3.2. Difficult Choices

During the design process, some challenging decisions were faced regarding some tricky participation and
cardinality ratios.

a. Cardinality of Songs, Albums, Artists with their corresponding Chart and Pop tables
In the AlbumChart and AlbumPop table, there are many entries for a single Aloum. However, in the
beginning, we did not have any auto-generated keys and so ended up with a many-to-many
relationship. However, while reflecting on feedback later, we realized the significance of a serial
keys as the primary key of these tables and landed into an appropriate one-to-many relationship.
The same situation happened with ArtistChart, ArtistPop, SongChart and SongPop tables.

b. Participation ratio between Songs and Albums
We processed our database in a way such that an Artist cannot exist in the database without
releasing an album or writing a song. Hence, we had a total participation between ‘Albums and
Artists’, and ‘Songs and Artists’. We also assumed to have a total participation between Albums
and Songs considering the fact that a song is always a part of an album. However, as we progressed
through our project, we realized that there can be songs without an album and a total participation
eliminates a good number of records from our database. Therefore, we made the relationship as a
partial participation with consideration that an album can still be in the database with missing its
songs and a song can be written without assigning it to an album or with a missing album entry.
This change made our database more consistent and prevented losing most of its data.

3.3. Relational Database Fit

The data model cleanly fit into the relational database paradigm, as it effectively captures the relationships
between entities through primary and foreign key constraints. This relational structure enables efficient
guerying and manipulation of the data. This was possible due to the actions mentioned in section 3.1-2.

3.4. Regrets and Changes

While the initial model was carefully designed, there may be some aspects that could have been improved
upon in hindsight. For instance,

a. Albums with missing Songs
All the songs of an existing album should have also existed in the database; due to not having this
privilege, we could not make the total_track attribute derived.

b. Two types of Release Day
No song should have been in the database without its corresponding Album; due to not having this
privilege, we ended up having two types of release day one for when an artist releases an album
and another for when an artist writes a song. We did not forcefully make a total participation in
this regard to ensure more consistency and data availability as mentioned in section 3.2(b).
However, our model needed to be changed from our initial version as we shifted from a total
participation to a partial participation between Songs and Album.

We also designed the model to have all many-to-many relationship of Songs, Albums, Artists with their
corresponding Chart and Pop tables. We had to change these one-to-many relationships as per the reasons
mentioned in section 3.2(a). Apart from these, we did not have major changes to our initial database
design.

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 8 of 18

3.5. Alternative Modelling

a. Primary Key Choice
Using "id" and "week" together as the primary key in Chart tables is a viable alternative. This
approach ensures uniqueness within each week. Also, employing "id" and "year" together as the
primary key in Pop tables could be another option. This ensures uniqueness within each year and
simplifies querying, especially for yearly trends and analysis. However, these approaches may
increase complexity in querying and indexing due to composite keys.

b. Storing Images
Storing images associated with albums or artists could enhance the user experience as we had
some image URLs provided in the original database [1]. However, it may require additional storage
space and considerations for image file formats and retrieval methods.

c. Lyrics Storage
Storing lyrics in a separate table linked to songs or storing them as JSON strings could provide
flexibility for longer texts and facilitate searching and analysis based on lyrical content. However,
this approach may introduce complexities in maintaining data consistency and synchronization.

d. Handling Many Attributes in Songs
Managing many attributes in the Songs table might lead to redundancy and data integrity issues. A
possible solution could involve normalizing the data by splitting attributes into separate tables,
such as one for audio features and another for metadata. We could also transfer the release day to
the relationship table Writes.

Given the work completed and the project's objectives and based on the pros and cons of the alternative
actions mentioned above, we would still choose the current model as it effectively captures the essential
aspects of the music industry and meets the requirements for analysis and exploration. However, we could
handle the Songs table in a better way following some options mentioned in part (d) of this section 3.5.

4. Discussion of the Database

For our project, we utilized a Microsoft SQL Server database management system (DBMS) hosted on the
Uranium platform of University of Manitoba. The database is accessed through Aviary Linux system of
University of Manitoba, which serves as the development and execution environment for our queries and
scripts.

The database connectivity is established using the JDBC (Java Database Connectivity) driver provided by
Microsoft SQL Server. Specifically, we incorporated the mssql-jdbc-11.2.0.jre11.jar file, which corresponds
to the version of the JDBC driver used for connecting to the SQL Server database.

To facilitate secure authentication and connection to the database, we stored the necessary user
credentials (username and password) of one of our team members in a configuration file named auth.cfg.
This file ensures that only authorized users can access the database and execute queries unless the file has
been shared unknowingly.

The choice of Microsoft SQL Server was a project requirement for us. Additionally, the integration of Aviary
and Uranium platforms provided a seamless environment for database development, testing, and
deployment.

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 9 of 18

The database population process involved reading data from .csv files and generating SQL insert
commands. This task was executed efficiently using batch processing with the addBatch() method to
accumulate SQL commands and executeBatch() method to execute them in bulk. This approach
streamlined the population process by minimizing database interactions and optimizing performance.
Additionally, the batch execution ensured consistency and reliability in data insertion, enhancing the
overall robustness of the database population procedure.

5. Description of Interface

5.1.Command Line Ul

User interface of a program that operates primarily through text commands entered by the user via a
command-line interface (CLI), rather than a graphical user interface (GUI).

Interface Functionality

i Command Line Interface made using java.
ii. The user can enter the commands to interact with the database.
iii. h command to see the menu of valid commands.
iv. The user gets the results displayed in a tabular form for a better view and progress bar only for the
repopulate command (takes time to complete execution).
v. Theinterface is made easy to use with allowing the user to get customized results with multiple
inputs and get a result displayed in a tabular form.

5.2. Help Menu

When the user runs the program, they can press the command h to view the help menu. This menu
provides information about the various commands available within the program, along with explanations
of their functionalities and the syntax required to use them.

The user must run the h - Get help and instructions commands menu command to display a menu of
commands with the description of commands.

Instructions to Use the Commands

i. Some commands require specific inputs like artistName/albumName/songName/genre.

ii. Use basic commands like 'artists’, 'albums', or 'songs ' or 'artistcount ' 'or artistdistype' to get list of
full artists/albums/songs Names or genres or type of artists in our database.

iii. Each command in the help menu follows a specific format, typically indicating the command name
followed by required and optional input parameters enclosed in angle brackets (< >).

iv. Attributes marked with * are optional and not required for the command to function but can
specify additional criteria or filters for the command's execution.

V. Each Command has a description which explains the expected output, use of input and the
additional criteria for optional inputs.

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 10 of 18

Welcome! Type h to get commands menu for MusicOSet DataSet
db > h
Music0Set DataSet Commands Menu:
PR
| h - Get help and instructions commands menu
commands require specific inputs like artistName/albumName/songName/genre.
Use basic commands like 'artists <na , 'albums <name>', or 'songs <name>' or ‘'artistcount <genre>' 'or artistdistype’
to get list of full artists/ albums/ songs Names or genres or type of artists in our database
command in the help menu follows a specific format, typically
Indicating the command name followed by required and optional input parameters enclosed in angle brackets
Attributes marked with * are optional and not required for the command to function but can specify additional criteria or filters for the command's execution
Command has a descript which explains the expected output, use of input and the additional criteria for optional inputs
BASIC COMMANDS TO GET LIST OF NAMES,
<name> - List artists whose names contain the specified string
albums <name> - List albums whose names contain the specified string
songs <name> - List songs whose names contain the specified string
artistcount <genre> - Get the number of art § in the searched genres and names of artists for a specific main genre

artistdistype - Get the d ribution of art s by type and names of artists by specific type

-COMMANDS RELATED TO ARTISTS-
| poptracks <N> <artistName> - Get the top N popular tracks by the exact artistName
| topartistsp <N> <xgenre> - Get the top N artists of a genre (optional) by popularity and followers

| topartistsS <N> <xyear> - Get the top N artists by the number of songs released in a year (optional) or throughout their career

| artistspop <top or bottom> <N> <start_year B genre> - Get the top/bottom N artists by popularity for a given year range (optional - genre)

| artistsweek <top or bottom> <N> <startdate > - Get the top/bottom N artists for a week range (MM/DD/YYYY) (optional for a specific genre)
| popyearartists <artistname> - View how the popularity of an artist by name has changed over time (year to year)

| artistcollabsongs - List artists who have written more than one collaboration song
|
|

expartists > - List names and followers of artists who have written more than X songs and released more than Y albums
artistallgenres <genre> - List artist names that follow/have all the genres that are similar to the specified genre
+ - c

+ - --COMMANDS RELATED TO ALBUMS-- =

| topalbumsy <start_year> <end_year> <N> <*type> - Get the top N albums in the year range (optional by type)

| albumspop <top or bottom> <N> <start_year> <end_year> - Get the top/bottom N albums for the year range

| albumsweek <top or bottom> <N> <startdate> <enddat - Get the top/bottom N albums for a week range (MM/DD/Y
| releasedalbums <artistname> - List the released albums for a particular artist

COMMANDS RELATED

avgfeatures <albumName> - View the average acoustic features per song of an album
avgduration ngName> - View the average duration per song of an album
totalsong ar> - Get the total number of music releases per year
songcontain <ke rd> - List songs that contain a certain keyword
op <top or bottom> art_year> <end_year> - Get the top/bottom N songs for the year range
songsweek <top or bottom> <N> <startdate> <enddate> - Get the top/bottom N songs for a week range (MM/DD/YYYY)
partysongs <N> - List N Party Songs: artist, album, and song popularity
soothingsongs <N> List N Soothing Songs: artist, album, and song popularity

| deartists <N> - Delete artists with fewer than N followers

| dealbums <year> - Delete albums released before the specified year

| desongs <N> - Delete songs with popularity less than N

o

+ = COMMANDS FOR DELETING ALL AND REPOPULATING ALL DATA INTO DATABAS
| deleteall - Delete all data from all tables

| repopulate - Create and populate all tables in the database

db >

Fig-04: Help Menu in Command Line Ul

5.3. Handling Invalid User Input and Preventing SQL Injection

a) Handling invalid input
The user gets an error message Invalid Input or Invalid Command is asked to re-enter another
command when the user either enters a command that does not exist or a command with
incomplete required inputs or input is not of the valid required type.

b) Handling SQL injection
The user gets an error message and is asked to re-enter another command when the user
tries to inject SQL commands as input. This is checked by seeing if the user input contains any
of the following strings "--", ";", """, i mn ust o=t Mynion select”, "or select”, "intersect
select", "except ", "*".

UM ‘ Department of
@ Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - . Dip, S. S. Hora, R. Singh

Page 11 of 18

db > rrr

Invalid Command entered!. Please use h to Get help and instructions commands menu

db > artists

Require argument for this command in format: artists <name>

db >

Invalid Command entered!. Please use h to Get help and instructions commands menu
db > artists red or 1=1;

Invalid Input entered!. Please use h to Get help and instructions commands menu

db>|

Fig-05: Examples of Handling Invalid User Input and
Preventing Injection in Command Line Ul

5.4. Data Repopulation

Command to repopulate data is repopulate - Create and populate all tables in the database.

This command calls the repopulate() function in the code that first calls setup() and then calls the functions
to read the .csv file in Database Files folder, add the queries to the batch and execute the batch.

Progress bar is shown to users to visually indicate the ongoing process of refreshing data, ensuring a user-
friendly experience by providing clear feedback that the command is being executed.

db > repopulate db > repopulate

Creating and Populating the Database Creating and Populating the Database

Please Wait.... .
Please Wait....

[**] 100%

Fig-06: Progression for Data Repopulation in Command Line Ul

6. List of Interesting Queries

The Following queries are few of the interesting queries for our project.

6_1_art]sta||genres db > artistallgenres canadian hip hop

A1l Artists following all the genres like canadian hip hop
This query list the names of all the artists
that follow all the genres which are like X
using wild-card approach for searching. The
query is interesting for user to know the Roy Woods
artists who follow all varieties for a certain althte B eI
type of genre.

Tory Lanez

Belly
The command must be in format Madchild
artistallgenres <genre> where genre is the
user input.

Xis user input here.
P Fig-07: Executing artistallgenres command in Command Line Ul

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

N

Page 12 of 18

6.2. partysongs

The analyst can ask to display the N number of party Songs, their writer and the album name they were
released in. Party songs usually have:
i High danceability
ii. High energy
iii. High tempo
iv. Low acousticness
V. Positive valence
vi. Moderate to high loudness
vii. Low instrumentalness
Here we are assuming that party songs have danceability > 0.5, energy > 0.5, tempo > 100, acousticness <
0.5, valence > 0, loudness < -5 and instrumentalness < 0.01.
The user enters the number of songs to display in the list which is N.

Command Format: partysongs <N> - List N Party Songs: artist, album, and song popularity.

db > partysongs 10
Top 10 Party Songs:

| Artist Name Song Name Album Name Popularity

Imagine Dragons Believer Evolve

Post Malone Better Now beerbongs & bentleys
Travis Scott SICKO MODE ASTROWORLD

Zedd The Middle The Middle

Grey The Middle The Middle

Maren Morris The Middle The Middle

Ariana Grande no tears left to cry Sweetener

Lil Uzi Vert X0 Tour L1if3 Luv Is Rage 2

Post Malone I Fall Apart Stoney (Deluxe)
Khalid Young Dumb & Broke American Teen

Fig-08: Executing partysongs command in Command Line Ul

6.3. soothingsongs

The analyst can ask to display the N number of soothing Songs, their writer and the aloum name they were
released in. Part songs usually have:
i. Low danceability
ii. Low tempo
iii. High acousticness
iv. Low energy
V. Positive valence
vi. Low loudness
vii. Low instrumentalness
Here we are assuming that party songs have danceability < 0.5, energy < 0.5, temp < < 120, acousticness >
0.5, valence > 0, loudness > -5, instrumentalness < 0.01).
The user enters the number of songs to list. Let user has entered N.

Command Format: soothingsongs <N> - List N Soothing Songs: artist, alboum, and song popularity.

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

N

db > soothingsongs 10
Top 10 Soothing Songs:
Artist Name

Céline Dion

Drake

Mac Miller

Simon & Garfunkel
Simon & Garfunkel
Lovis Armstrong
Journey

James Blunt
Lionel Richie
Pearl Jam

6.4. artistdistype

The analyst can ask to see the
distribution of artists according to their
type, then to display the name, followers
and popularity of a specific type of artist.
The user can enter the type of artist from
the displayed distribution list. Let the
user type X on the follow-up command

entry.

Command Format: artistdistype - Get
the distribution of artists by type and
names of artists by specific type.

6.5. artistspop

Song Name
My Heart Will Go On - Love Theme from Titanic
Marvins Room

Come Back to Earth

The Boxer

Bridge Over Troubled Water

What A Wonderful World

Open Arms

Goodbye My Lover

Hello

Just Breathe

Album Name

Let's Talk About Love

Take Care (Deluxe)
Swimming

Bridge Over Troubled Water
Bridge Over Troubled Water
What A Wonderful World
Escape

Back to Bedlam

Can't Slow Down

Backspacer

Fig-09: Executing soothingsongs command in Command Line Ul

db > artistdistype

| rapper
|singer

rapper
|Artist Name

|Kebo Gotti
|Skizzy Mars

| Lupe Fiasco

|G-Eazy
|Violent J

|Maxo

|Mike Jones
|will.i.am
|Kool G Rap

|JT The Bigga Figga

|Y6
|Indo G

|Blaze Ya Dead Homie

Number of Artists

Enter a specific type to get artist names. Enter STOP to

Followers

228659
1213719
4034696
54189
3328
199503
2682505
113931
14964
1850716
7885
56417

Page 13 of 18

Popularity|

73
72
70
69
68
68
68
67

Distribution (%

Artist Type

rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper
rapper

Fig-10: Executing artistdistype command in Command Line Ul

The analyst can ask to list N number of artists in ascending order (i.e. top) or descending order (i.e. bottom)
of year end score in Artist Pop. If they specify a genre, the order will be made on only the artists that have
the requested genre in their genres attribute. Otherwise, the order will be made on all the artists in the

database.

Command Format: artistspop <top or bottom> <N> <start_year> <end_year> <*genre> - Get the
top/bottom N artists by popularity for a given year range (optional - genre).

We have similar command for albums (albumspop <top or bottom> <N> <start_year> <end_year> - Get the
top/bottom N albums for the year range) and songs (songspop <top or bottom> <N> <start_year>

<end_year> - Get the top/bottom N songs for the year range).

UM/

Department of
Computer Science

COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

end this command

N

Page 14 of 18

db > artistspop top 10 2000 2018 hip hop
Top 10 artists of genre hip hop in year range: 2000-2018 by popularity.
7777777777 e
Artist Name Followers| Main Genre|
m o e e

o
|
n
| 4034696
| 5128353
Lil Wayne 10622 | 8209221
|
|
|
|
|
|
|
+

Rae Sremmurd

Kevin Gates 7014 2554515
2758181
385182
8391910
484473
2256060
566612

|

|

|

|

| sza 6986
| Montell Jordan 6421
| Wiz Khalifa 5800
| Huncho Jack 5134
| NF 5040
| Will smith

N o e e e = e e =

Fig-11: Executing artistspop command in Command Line Ul

db > popyearartists Drake
|Artist Name

6.6. popyearartists

The analyst can ask how the popularity of the artists has :g::‘;z
changed year after year. The user can enter the specific |Drake
artist’s name. Let the user typed name be X. :E::i

| Drake
Command Format: popyearartists <artistname> - Vliew how :z::‘::
the popularity of an artist by name has changed over time |Drake White

(year to year). |Drake

| Drake

Fig-12: Executing popyearartists command in

6.7.albumsweek Command Line Ul

The analyst can ask to list N number of albums in ascending

order (i.e. top) or descending order (i.e. bottom) of the average of rank score in Album Chart that qualifies
for the requested week range.

Command Format: albumsweek <top or bottom> <N> <startdate> <enddate> - Get the top/bottom N
albums for a week range (MM/DD/YYYY).

We have two similar queries for artists (artistsweek <top or bottom> <N> <startdate> <enddate> <*genre>
- Get the top/bottom N artists for a week range (MM/DD/YYYY) (optional for a specific genre)) and songs
(songsweek <top or bottom> <N> <startdate> <enddate> - Get the top/bottom N songs for a week range
(MM/DD/YYYY)).

db > albumsweek top 10 01/01/2000 12/31/2018
Top 10 albums in the week from 1/1/2000 to 31/12/2018 by popularity.
fmmmmmemmmemmemememmmeemmeem—me—e—————— +-- B

| Album Name | Avg Rank Score | Popularity | Album Type

Dying To Live
Championships
Farm Tour..Here’s To The Farmer single

The Peace And The Panic album

A Star Is Born album
AFI (The Blood Album) album
ASTROWORLD album
Scorpion 1 album
beerbongs & bentleys album
Other People's Stuff

B e e Fommmm e m e mmmmmmmmm - mmmmmmmm e Hmmmmmmmmmmmmmm Hmmmmmmmm e +------- tmmmm - +

Fig-13: Executing albumsweek command in Command Line Ul

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 15 of 18
7. Concluding Remarks

7.1. Relational Database System for the Dataset and Exploring Alternate Systems

For the organization and management of our dataset, which encompasses a variety of entities including
songs, artists, albums, and charts, we have determined that a relational database management system
(RDBMS), specifically MySQL, is most suitable. This decision is grounded in the inherently structured nature
of our data, where entities are not only distinct but also interconnected through various relationships. For
instance, songs are linked to artists and albums, while albums correlate with artists and potentially charts,
necessitating a system that can efficiently manage and query these intricate relationships.

Relational databases, such as MySQL, excel in handling structured data and supporting complex queries
that involve multiple entities and their relationships. This capability is particularly beneficial for our
dataset, enabling us to perform sophisticated data analysis. For example, we can easily query the database
to find all songs by a particular artist that appeared on specific charts within a given timeframe, or to
retrieve all albums that contain songs that have achieved a certain ranking.

While alternative database systems like NoSQL or graph databases present certain advantages, such as
scalability and flexibility for unstructured data or the efficient mapping of relationships, respectively, they
were not deemed optimal for our specific requirements. NoSQL databases lack the inherent structure and
complex querying capabilities for relational data. Similarly, while graph databases are excellent for
mapping and exploring relationships between data points is not suitable for our dataset because we
needed a database that could handle complex relational queries. Therefore, employing MySQL as our
database solution offers a balance of efficiency, structure, and the ability to handle complex queries
involving multiple relationships between entities. This approach ensures that we can maintain data
integrity, support detailed data analysis.

7.2. Feasibility of Queries in Alternate Database System and Potential on Different or
More Queries

The feasibility and ease of recreating the interesting queries mentioned, which involve complex relationships
between songs, artists, albums, and charts, would vary significantly across different database systems. Each
type of database relational, NoSQL, and graph has its own set of strengths and weaknesses that influence
how data can be structured, stored, and queried. NoSQL databases allow for more flexible data models,
which can support dynamic queries on unstructured or semi-structured data. However, recreating complex
relational queries might be less straightforward.

Graph databases enable a different set of queries, particularly those involving deep relationships, patterns,
or paths between data points. If we were to use a graph database, we could potentially make a query that
would return a recommendation of songs depending on the input set of songs but on the other hand it would
be very hard to do queries where we require the joining of large volumes of entries which is more
straightforward in a relational DBMS.

7.3. Potentials as a Teaching Tool for COMP 3380 Course and its Future Students

A database featuring songs, artists, albums, and charts would serve as an excellent teaching tool by
providing a rich context for practical exercises across various aspects of database design and management.
Students could engage in data modelling to create an efficient, normalized schema that represents
complex relationships within the music industry, honing their skills in identifying key relational database

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 16 of 18

components. Writing SQL queries to analyse music trends would teach students proficiency in SQL.
Assignments could explore transaction management, simulating real-world scenarios of updating charts
and handling concurrent database accesses, thus emphasizing the importance of data integrity and
consistency. Furthermore, students could learn about performance optimization through query tuning and
index design. This multifaceted approach not only enriches students' theoretical knowledge but also equips
them with practical skills crucial for navigating the complexities of database systems.

7.4. Conclusion

For the structured and relational nature of our music-related dataset, which includes entities like songs,
artists, albums, and charts, a relational database management system, specifically MySQL, has been
identified as the most fitting solution. This choice was motivated by the need to efficiently manage and
qguery the complex interconnections among these entities, where MySQL's strengths in handling structured
data and supporting complex relational queries come to the forefront. Despite the potential advantages of
alternative systems like NoSQL and graph databases these were not deemed optimal due to their
limitations in handling the kind of complex relational queries our dataset requires. The detailed data
analysis and integrity maintenance facilitated by MySQL underline its suitability for our needs.
Furthermore, the dataset's structure offers a rich educational resource for database design and
management courses, providing students with hands-on experience in data modelling, SQL querying, and
understanding transaction management and performance optimization. This comprehensive approach not
only enhances theoretical knowledge but also imparts practical skills essential for navigating database
systems, making it an exemplary teaching tool for courses like COMP 3380.

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 17 of 18

Appendix

Sukhmeet's Contribution

Sukhmeet played a critical role in the development and optimization of the project code to interact with the
database (interface), functionality and ease of use and querying capabilities, making the program robust
against invalid input and sql injection. He was instrumental in the normalization process, ensuring the
database structure was efficient and logically organized, which is vital for maintaining data integrity and
optimizing query performance. Additionally, Sukhmeet contributed significantly to the creation of the Entity-
Relationship (ER) diagram, a crucial step in visualizing the database schema and understanding the
relationships between the data entities, converting into a relational model and normalizing it. He wrote the
instructions on how to create and populate the database and run your program in the readme file and
prepared the final project submissions. His work on the query and interface aspects facilitated smooth
interaction with the database, allowing for efficient data retrieval and manipulation.

Sudipta's Contribution

Sudipta focused on the essential tasks of data cleaning and formulating complex queries, a foundational
work that guaranteed the data's quality and usability within the database. His efforts in data cleaning were
paramount in ensuring accuracy and consistency across the dataset, which, in turn, enhanced the reliability
of query results. Beyond this, Sudipta was involved in developing the ER diagram, providing a clear blueprint
of the database structure and relationships. His contribution to the project's documentation further enriched
the resource pool, offering detailed insights into the database schema, query examples, and guidelines for
future users, thereby ensuring the project's longevity and ease of use.

Rishamdeep's Contribution

Rishamdeep's contributions were pivotal to the foundational aspects and overall integrity of the project. He
commenced his involvement by identifying and securing the dataset, a crucial step that determined the
project's scope and potential. Following this, Rishamdeep undertook the critical task of designing the
database, a process that involved detailed planning to ensure the structure would efficiently support the
dataset's complexity and the intended queries. His role also extended to populating the database, where he
used batches to transfer data into the newly created allowing efficient data transfer to the database while
also ensuring accuracy and consistency in the dataset's representation within the database. He played a
central role in crafting the ER diagram and applied normalization principles to the database, a critical step
for reducing redundancy and enhancing the integrity and efficiency of the database operations.

N

UM ‘ Department of
Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - S. Dip, S. S. Hora, R. Singh

Page 18 of 18

References

[1] .csv Tables: musicoset_metadata.zip (Contains textual and numeric information about songs, artists, and
albums), musicoset_popularity.zip (Contains nine tables of musical popularity information) and
musicoset_songfeatures.zip (Contains lyrics and acoustic fingerprints of the songs collected).
Available: [Online] https://marianaossilva.github.io/DSW2019/index.html#tables.

[2] MusicOSet, An Enhanced Music Dataset for Music Data Mining. Available: [Online]
https://marianaossilva.github.io/DSW2019/index.html.

SN
p UM ‘ Department of
@ Computer Science COMP 3380 — FINAL PROJECT REPORT | Team 9 - . Dip, S. S. Hora, R. Singh

https://marianaossilva.github.io/DSW2019/index.html#tables
https://marianaossilva.github.io/DSW2019/index.html

